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Note 

Numerical Calculations of Discontinuities by 
Shape Preserving Splines 

Methods to interpolate one dimensional data by constructing a visually pleasing 
monotone interpolant free from the “bumps” and “wiggles” that frequently plague 
standard interpolation methods have been the subject of several publications in recent 
years (see the work of Fritsch and Carlson, where the problem of monotone piecewise 
cubic interpolation has been studied and compared to other standard interpolation 
methods [ 11). A related problem is that of integrating differential equations in an 
Eulerian mesh when the solution of the equation 

(au/at) + c(&@x) = 0 

is calculated from the equation 

(1) 

24(x, t) = u(x - Cl, 0) (2) 

by polynomial interpolation. The “bumps” and “wiggles” which result in this case is 
the presence of discontinuities and shocks create troubles. Hyperbolic equations of 
the type in Eq. (I) are of fundamental importance in many branches of mathematical 
physics. (The solution of the Vlasov equation by splitting techniques can be reduced 
to the problem of solving equations of the type in Eq. (1) [2-31.) The problem of 
solving Eq. (1) by polynomial interpolation has been studied recently by Knorr and 
Mond [4], who applied a monotonicity principle in addition to a cubic spline inter- 
polation. This monotonicity principle makes use of the fact that if the solution u(x, t) 
or a part of it is monotone at time t, it will remain so for later times, and hence this 
principle is enforced to eliminate any deformation, and to keep or restore the 
monotone shape of the curve. (A review of alternative methods for the solution of 
Eq. (l), such as FCT [5], is also presented in [4].) When, however, such a 
monotonicity principle is applied to the solution of equations like the Vlasov 
equation, where very small localized bumps and irregularities can develop due to 
nonlinear effects such as wave-particle interactions, and with small structures 
developing in the phase-space fluid, special care and attention is to be paid when such 
a monotonicity principle is applied. 

Shape preserving polynomial or spline interpolation has been investigated by 
several authors in recent years [6-71, and can offer a nice alternative for the solution 
of problems of the type discussed, without any additional external modification, 
deformation, or correction introduced to the algorithm. An algorithm for the 
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computation of an interpolating shape-preserving osculatory quadratic spline has 
been presented in [7]. This quadratic spline preserves the monotonicity and convexity 
of the data when consistent with the given derivatives at the data points. It is the 
purpose of this note to apply such an algorithm for the solution of the problems 
discussed. 

Details for the algorithm can be found in [7]. We give for reference the essential 
steps to compute the quadratic spline in order to fix the notation. The method 
depends on the following property of the Bernstein polynomials on an interval Z = 
[ xi, xi+ i ] : Let P(xi, yi) and Q(xi+ i, yi+ i) denote the end points of interval I. Let 
T(x,, yr.) be a point satisfying xT = (xi + xi+ ,)/2. Let g be the first degree spline 
passing through the points P(x,, y,), Q(x,+ , , yi+ ,), and T, with a single knot at xr . 
Let B,(g)(x) be the second degree Bernstein polynomial of g on [xi, xi+ ,I, which we 
denote by 

B*(P, 7’3 Q) = (Xi+ 1 -Xi)-*{ g(Xi)(Xi+ I -X)’ + ‘J’AX-Xi)(Xi+ I -XI 

+ dxi+ I>tx - xi)2 1. (3) 

Then: 

(1) 

B*(g)(xi) = dxi) = Yi7 (4) 

B2(g)(xi+ 1) = dxi+ I> = Yi+ 1) (5) 

(4 

Bl(g)(xi) = g’txih (6) 

B!!(g)(xi+ I) = g’Cxi+ I>* (7) 

(3) If g is monotone on [xi, xi+,], then B,(g) is monotone on the same 
interval. 

(4) If g is convex (concave) on [Xi, xi+ i], then B,(g) is convex (concave) on 
the same interval. 

Hence B,(g) preserves the shape of g, has a continuous first derivative on [xi, xi+ ,I, 
while g does not. 

We use this property to construct a first-degree spline g on Z, which has slope Mi 
at P and Mi+, at Q. Let L, be the line through P with slope Mi and L, the line 
through Q of slope Mi+ i. (See Fig. 1.) Let x, be the abscissa of the point of inter- 
section of L, and L,. Let V(xV, yy) and W(x,+,, yw) be the points of abscissa 

Xv = (Xi + X,7)/2, (8) 

xW = txz + xi+ IV2 (9) 
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FIG. 1. The interval P(Xiv vi), Q(x)+ I 1 Yi+ I ) which is interpolated by Eq. (13). 

situated, respectively, on lines L, and L, 

YV = L I Cxi + xz)/29 (10) 

YWcL2txz +xi+1Y2* (11) 

Let L be the line joining V and W and define 

Y, = a%)* (12) 

Then Z( JJ*, x,) is a join point on the spline. Define f on (xi, xi+, ] as follows: 

f(x) = B,(P, K Z), on [xi9 x,]9 

=B,(Z, K Q), on [Xr, Xi+ I]- 
(13) 

Then f E C’[xi, xi+ ,] and satisfies 

ftxi) = Yi 9 (14) 

f(Xi+l)=Yi+lr (15) 

f’(xi) = Mi 3 (16) 

fl(Xi+l)=Mi+l* (17) 

If L, and L, intersect at x, outside [xi, xi+ i], then we take x, = (x, + xl+ ,)/2. For 
other particular cases, see [ 71. The method used in [7] to determine Mi, and which 
we apply in the following calculations is the following: Let S, be the quantity 

si=(Yi-Yi-l)/(xi-xi-,) for i= I,2 ,..., N. (18) 

If ]Si] > IS,, , ] > 0, we extend the line through (xi, yi) of slope Si until it intersects 
the horizontal line through (xi+ r, yi+,)atthepoint(&yi+,). Weset.?=(Z+xi+,)/2 
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FIG. 2. The interpolation curve for the first data set from [ 11. The crosses denote the data points. 

and W= (Y,+~ - vi)/@ -xi). On the other hand, if 0 < ] Si] < 1 Si+ r 1, we reverse the 
procedure by extending the line through (x,, yi) of slope St+, , until it intersects the 
horizontal line through (xi-r, y,-r) at the point (2, y,-r). Then we set i = 
(xi-, +9/2 and M,= ( i- y y,-,)/(xi - a). For other particular cases, see [7]. 

Figures 2-4 contain the interpolation curves for three data sets. The first two data 
sets (Figs. 2 and 3) labeled RPN 12 and RPN 14 in [ 11, are actual data from LLL 
radiochemical calculations, while the data set in Fig. 4 is taken from Akima [8]. (The 
crossed points are the data sets, the other points are interpolated points using 
Eq. (13).) The resultant curves appear smooth and natural. 
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FIG. 3. The interpolation curve for the second data set from Ref. [ 11. The crosses denote the data 
points. 
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FIG. 4. The interpolation curve for the data set from Ref. [S]. The crosses denote the data point. 

We use Eq. (13) to propagate a unit pulse according to Eq. (1) with 
E = cAt/Ax = 0.2, where At is the time step and Ax is the uniform mesh size. The 
result is shown in Figs. 5a and b for the case with 50 points (after 500 time steps and 
1000 time steps, respectively). The flanks of the discontinuities remained smooth. 
Figure 6 contains the same test in which E = 0.1. To reach the same time as in 
Figs. 5, we have to run the code for 2000 time steps. Since the method is very 
sensitive to the calculation of the derivatives as indicated in Eq. (18), we have used as 
a value for the derivative the geometric mean between the value obtained when using 
Eq. (18) and the value calculated from a cubic spline (very little difference is 
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FIG. 5. The propagation of a pulse following Eq. (l), with N = 50 points (a) after 500 time steps, 
(b) after 1000 time steps. Note: cdl/Ax = 0.2. 
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FIG. 6. The propagation of a pulse following Eq. (l), with N = 50 points, after 2000 time steps. 
Note: cAt/Ax = 0.1. 

observed if only the value obtained by the method following Eq. (18) is used for the 
derivatives). Absolutely no bumps or overshooting appear. The erosion of the edges 
has been reduced. The form of the pulse remained highly symmetric: if we except the 
small rounding of the corners, only five points are appearing on the vertical line. The 
area of the unit pulse, calculated by a simple summation rule, varied between 0.999 
and 1.000, indicating that the deformation of the corners is very symmetric. So, at the 
expense of a small additional computational effort, very accurate results are obtained 
by a single quadratic polynomial interpolation. 

Figure 7 contains the results obtained with a sine test, a sine wave interrupted by a 
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FIG. 7. The propagation of a discontinuous sine curve following Eq. (l), (a) at t = 0; (b) after 500 
time steps. Note: cdl/Ax = 0.2. 
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discontinuity, as in [4]. The discontinuity remained located where it should be, 
according to the solution in Eq. (2), and the shape of the sine remained very nicely 
conserved. The discontinuity has broadened slightly and the amplitude of the positive 
peak has decreased by about 7% and by about 2.5 % for the negative peak after 
500 time steps. 

The accuracy of the method is further demonstrated by integrating the 
hydrodynamic equations written in terms of the Riemann invariants a and /3 [9], for 
the case of an isentropic flow, 

(&/at) + (24 + c) aapx = 0, (19) 

(&p/at) + (u - c) g/ax = 0, (20) 

where 

u = $(a -P), (1) 

c=S(y-- l)(a+P). (22) 

Equations (19) and (20) are of form (1) and are integrated using the previous 
method on a predictor-corrector scheme. We chose y = 1.4. Our initial conditions 
assume u = 0 everywhere, with two constant states, one to the left and one to the 
right, separated by a discontinuity which is assumed to lie midway two grid points. 
We use a uniform mesh with Ax = 0.01 and At = 5 x 10e3. The results in Figs. 8a 
and b for c and U, respectively, are obtained after 50 time steps. The schock region is 
very steep and is represented by two to three zones. Absolutely no overshooting is 
observed at the corners, which show very little erosion. 

096 -! 

FIG. 8a. The plot of c for the solution of an isentropic flow as described in Eqs. (19) and (20) after 
50 time steps. 
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FIG. 8b. The plot of u for the solution of an isentropic flow as described in Eqs. (19) and (20) after 
50 time steps. 

An important point in the accuracy of the method is the choice of the additional 
knot x,. Several particular cases are discussed in [7], especially when two additional 
knots are needed. 

We conclude that problems of polynomials interpolations, especially when applied 
to the solution of differential equations similar to Eq. (1) with discontinuities and 
shocks, can be handled very nicely by shape preserving polynomial splines. 
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